Partial suppression of a strongly expressed tonoplast sucrose transporter affects water use and carbon partitioning in Populus
نویسندگان
چکیده
Sucrose export from source organs, and its subsequent distribution among differentiating organs in wood-forming stems and elsewhere depends on the activity of sucrose transporters (SUTs). There are no comprehensive reports on SUT function in temperate tree species valued for their lignocellulosic biomass. To begin to address this gap, the SUT gene family was characterized and functionally analyzed in transgenic P. tremula x alba. The Populus SUT family features the three major groups characteristic of other dicots. In general, functionally distinct SUTs fall into different phylogenetic groups. Group-1 PtaSUT3 transcripts localize to leaf vascular traces and stem developing xylem; Group-4 PtaSUT4 to leaf spongy mesophyll, stem developing xylem, cambium and phloem; Group-2 PtaSUT5/6 to all leaf cells, stem developing xylem and phloem fibers. The SUT4 ortholog of Populus differs from that of other model plants in encoding a vacuolar transporter that is unusually well expressed in source leaves compared to Group-1 and 2 SUT genes. SUT4-RNAi transgenic plants demonstrated a shift of biomass allocation from stem to leaf in both nitrogen (N)-replete and N-limited plants. In those plants, sucrose exhibited a complex pattern of hyperaccumulation in exporting leaves and vascular tissues of the stem, and decreased accrual in the shoot tip and sink leaves. RNAi silencing of SUT4 reduced water uptake during drought simulation without significantly affecting overall shoot biomass accumulation.
منابع مشابه
The Tonoplast-Localized Sucrose Transporter in Populus (PtaSUT4) Regulates Whole-Plant Water Relations, Responses to Water Stress, and Photosynthesis
The Populus sucrose (Suc) transporter 4 (PtaSUT4), like its orthologs in other plant taxa, is tonoplast localized and thought to mediate Suc export from the vacuole into the cytosol. In source leaves of Populus, SUT4 is the predominantly expressed gene family member, with transcript levels several times higher than those of plasma membrane SUTs. A hypothesis is advanced that SUT4-mediated tonop...
متن کاملDrought response transcriptomes are altered in poplar with reduced tonoplast sucrose transporter expression
Transgenic Populus tremula x alba (717-1B4) plants with reduced expression of a tonoplast sucrose efflux transporter, PtaSUT4, exhibit reduced shoot growth compared to wild type (WT) under sustained mild drought. The present study was undertaken to determine whether SUT4-RNAi directly or indirectly altered poplar predisposition and/or response to changes in soil water availability. While sucros...
متن کاملTonoplast Sugar Transporters (SbTSTs) putatively control sucrose accumulation in sweet sorghum stems.
Carbohydrates are differentially partitioned in sweet versus grain sorghums. While the latter preferentially accumulate starch in the grain, the former primarily store large amounts of sucrose in the stem. Previous work determined that neither sucrose metabolizing enzymes nor changes in Sucrose transporter (SUT) gene expression accounted for the carbohydrate partitioning differences. Recently, ...
متن کاملCloning, localization and expression analysis of vacuolar sugar transporters in the CAM plant Ananas comosus (pineapple).
In photosynthetic tissues of the CAM plant pineapple (Ananas comosus), storage of soluble sugars in the central vacuole during the daytime and their remobilization at night is required to provide carbon skeletons for nocturnal CO(2) fixation. However, soluble sugars produced photosynthetically must also be exported to support growth processes in heterotrophic tissues. To begin to address how va...
متن کاملIdentification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach.
The vacuole is the main cellular storage pool, where sucrose (Suc) accumulates to high concentrations. While a limited number of vacuolar membrane proteins, such as V-type H(+)-ATPases and H(+)-pyrophosphatases, are well characterized, the majority of vacuolar transporters are still unidentified, among them the transporter(s) responsible for vacuolar Suc uptake and release. In search of novel t...
متن کامل